Friction in ferroelastic and martensitic materials
نویسندگان
چکیده
منابع مشابه
On the fracture toughness of ferroelastic materials
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger ...
متن کاملStrain intermittency due to avalanches in ferroelastic and porous materials.
The avalanche statistics in porous materials and ferroelastic domain wall systems has been studied for slowly increasing compressive uniaxial stress with stress rates between 0.2 and 17 kPa s-1. Velocity peaks [Formula: see text] are calculated from the measured strain drops and used to determine the corresponding Energy distributions [Formula: see text]. Power law distributions [Formula: see t...
متن کاملDeterministic control of ferroelastic switching in multiferroic materials.
Multiferroic materials showing coupled electric, magnetic and elastic orderings provide a platform to explore complexity and new paradigms for memory and logic devices. Until now, the deterministic control of non-ferroelectric order parameters in multiferroics has been elusive. Here, we demonstrate deterministic ferroelastic switching in rhombohedral BiFeO(3) by domain nucleation with a scannin...
متن کاملA Domain Wall Model for Hysteresis in Ferroelastic Materials
We develop a model that quantifies constitutive nonlinearities and hysteresis inherent to ferroelastic compounds, with emphasis placed on shape memory alloys. We formulate the model in two steps. First, we use the Landau theory of phase transitions to characterize the effective Gibbs free energy for both single-crystal and polycrystalline ferroelastics. The resulting nonlinear equations model e...
متن کاملFriction law and hysteresis in granular materials.
The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, [Formula: see text], is pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2015
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/602/1/012018